Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioprocess Biosyst Eng ; 43(8): 1369-1379, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32193754

RESUMO

A conventional reactor in microbial electrochemical technology (MET) consists of anode and cathode compartments divided by a separator, which is usually a proton exchange membrane (PEM), such as Nafion 117. In this study, a novel porous clay earthenware (NCE) was fabricated as the separator to replace the highly cost PEM. The fabrication of NCEs is with raw clay powder and starch powder that acts as a pore-forming agent at different starch powder contents (10 vol%, 20 vol%, and 30 vol%), ball-milled before hydraulically pressed to form green ceramic pellets and sintered up to 1200 °C. The highest power density of 2250 ± 21 mW/m2 (6.0 A/m2), the internal resistance of 75 ± 24 Ω and coulombic efficiency (CE) of 44 ± 21% were produced for MFC-NCE from 30 vol% starch powder content under batch mode operation. The MFC-PEM combination produced the lowest power density, CE and the highest internal resistance up to 1350 ± 17 mW/m2 (3.0 A/m2), 23 ± 15% and 326 ± 13 Ω, respectively.


Assuntos
Fontes de Energia Bioelétrica , Argila/química
2.
J Microbiol Biotechnol ; 29(10): 1607-1623, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31474095

RESUMO

Sediment bioelectrochemical systems (SBESs) can be integrated into brackish aquaculture ponds for in-situ bioremediation of the pond water and sediment. Such an in-situ system offers advantages including reduced treatment cost, reusability and simple handling. In order to realize such an application potential of the SBES, in this laboratory-scale study we investigated the effect of several controllable and uncontrollable operational factors on the in-situ bioremediation performance of a tank model of a brackish aquaculture pond, into which a SBES was integrated, in comparison with a natural degradation control model. The performance was evaluated in terms of electricity generation by the SBES, Chemical oxygen demand (COD) removal and nitrogen removal of both the tank water and the tank sediment. Real-life conditions of the operational parameters were also experimented to understand the most close-to-practice responses of the system to their changes. Predictable effects of controllable parameters including external resistance and electrode spacing, similar to those reported previously for the BESs, were shown by the results but exceptions were observed. Accordingly, while increasing the electrode spacing reduced the current densities but generally improved COD and nitrogen removal, increasing the external resistance could result in decreased COD removal but also increased nitrogen removal and decreased current densities. However, maximum electricity generation and COD removal efficiency difference of the SBES (versus the control) could be reached with an external resistance of 100 Ω, not with the lowest one of 10 Ω. The effects of uncontrollable parameters such as ambient temperature, salinity and pH of the pond (tank) water were rather unpredictable. Temperatures higher than 35°C seemed to have more accelaration effect on natural degradation than on bioelectrochemical processes. Changing salinity seriously changed the electricity generation but did not clearly affect the bioremediation performance of the SBES, although at 2.5% salinity the SBES displayed a significantly more efficient removal of nitrogen in the water, compared to the control. Variation of pH to practically extreme levels (5.5 and 8.8) led to increased electricity generations but poorer performances of the SBES (vs. the control) in removing COD and nitrogen. Altogether, the results suggest some distinct responses of the SBES under brackish conditions and imply that COD removal and nitrogen removal in the system are not completely linked to bioelectrochemical processes but electrochemically enriched bacteria can still perform nonbioelectrochemical COD and nitrogen removals more efficiently than natural ones. The results confirm the application potential of the SBES in brackish aquaculture bioremediation and help propose efficient practices to warrant the success of such application in real-life scenarios.


Assuntos
Aquicultura , Sedimentos Geológicos/microbiologia , Lagoas/microbiologia , Eliminação de Resíduos Líquidos/métodos , Poluentes da Água/isolamento & purificação , Bactérias/metabolismo , Biodegradação Ambiental , Fontes de Energia Bioelétrica , Análise da Demanda Biológica de Oxigênio , Eletricidade , Eletrodos , Sedimentos Geológicos/química , Concentração de Íons de Hidrogênio , Nitrogênio/isolamento & purificação , Nitrogênio/metabolismo , Lagoas/química , Salinidade , Temperatura , Poluentes da Água/metabolismo
3.
J Microbiol Biotechnol ; 29(7): 1104-1116, 2019 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-31216610

RESUMO

In this study, we investigated the potential of using sediment bioelectrochemical systems (SBESs) for in situ treatment of the water and sediment in brackish aquaculture ponds polluted with uneaten feed. An SBES integrated into a laboratory-scale tank simulating a brackish aquaculture pond was established. This test tank and the control (not containing the SBES) were fed with shrimp feed in a scheme that mimics a situation where 50% of feed is uneaten. After the SBES was inoculated with microbial sources from actual shrimp pond sediments, electricity generation was well observed from the first experimental week, indicating successful enrichment of electrochemically active bacteria in the test tank sediment. The electricity generation became steady after 3 weeks of operation, with an average current density of 2.3 mA/m2 anode surface and an average power density of 0.05 mW/m2 anode surface. The SBES removed 20-30% more COD of the tank water, compared to the control. After 1 year, the SBES also reduced the amount of sediment in the tank by 40% and thus could remove approximately 40% more COD and approximately 52% more nitrogen from the sediment, compared to the control. Insignificant amounts of nitrite and nitrate were detected, suggesting complete removal of nitrogen by the system. PCR-DGGE-based analyses revealed the dominant presence of Methylophilus rhizosphaerae, Desulfatitalea tepidiphila and Thiothrix eikelboomii, which have not been found in bioelectrochemical systems before, in the bacterial community in the sediment of the SBES-containing tank. The results of this research demonstrate the potential application of SBESs in helping to reduce water pollution threats, fish and shrimp disease risks, and thus farmers' losses.


Assuntos
Aquicultura , Microbiota , Lagoas/microbiologia , Eliminação de Resíduos Líquidos/métodos , Poluentes da Água/metabolismo , Ração Animal , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Biodegradação Ambiental , Fontes de Energia Bioelétrica , Análise da Demanda Biológica de Oxigênio , Eletricidade , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Microbiota/genética , Nitrogênio/análise , Lagoas/química
4.
Front Chem ; 6: 318, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30159306

RESUMO

Understanding the mechanism of electron transfer between the cathode and microorganisms in cathode biofilms in microbial electrolysis cells (MECs) for hydrogen production is important. In this study, biocathodes of MECs were successfully re-enriched and subjected to different operating parameters: applied potential, sulfate use and inorganic carbon consumption. It was hypothesized that biocathode catalytic activity would be affected by the applied potentials that initiate electron transfer. While inorganic carbon, in the form of bicarbonate, could be a main carbon source for biocathode growth, sulfate could be a terminal electron acceptor and thus reduced to elemental sulfurs. It was found that potentials more negative than -0.8 V (vs. standard hydrogen electrode) were required for hydrogen production by the biocathode. In additional, a maximum hydrogen production was observed at sulfate and bicarbonate concentrations of 288 and 610 mg/L respectively. Organic carbons were found in the cathode effluents, suggesting that microbial interactions probably happen between acetogens and sulfate reducing bacteria (SRB). The hydrogen-producing biocathode was sulfate-dependent and hydrogen production could be inhibited by excessive sulfate because more energy was directed to reduce sulfate (E° SO42- /H2S = -0.35 V) than proton (E° H+/H2 = -0.41 V). This resulted in a restriction to the hydrogen production when sulfate concentration was high. Domestic wastewaters contain low amounts of organic compounds and sulfate would be a better medium to enrich and maintain a hydrogen-producing biocathode dominated by SRB. Besides the risks of limited mass transport and precipitation caused by low potential, methane contamination in the hydrogen-rich environment was inevitable in the biocathode after long term operation due to methanogenic activities.

5.
Bioresour Technol ; 238: 313-324, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28454006

RESUMO

The bioanode is important for a microbial electrolysis cell (MEC) and its robustness to maintain its catalytic activity affects the performance of the whole system. Bioanodes enriched at a potential of +0.2V (vs. standard hydrogen electrode) were able to sustain their oxidation activity when the anode potential was varied from -0.3 up to +1.0V. Chronoamperometric test revealed that the bioanode produced peak current density of 0.36A/m2 and 0.37A/m2 at applied potential 0 and +0.6V, respectively. Meanwhile hydrogen production at the biocathode was proportional to the applied potential, in the range from -0.5 to -1.0V. The highest production rate was 7.4L H2/(m2 cathode area)/day at -1.0V cathode potential. A limited current output at the bioanode could halt the biocathode capability to generate hydrogen. Therefore maximum applied potential that can be applied to the biocathode was calculated as -0.84V without overloading the bioanode.


Assuntos
Fontes de Energia Bioelétrica , Eletrólise , Eletrodos , Hidrogênio
6.
Bioresour Technol ; 233: 296-304, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28285221

RESUMO

Calcium carbonate was evaluated as a replacement for the base during the fermentation of glycerol by a highly productive strain of 1,3-propanediol (PDO), viz., Clostridium butyricum JKT37. Due to its high specific growth rate (µmax=0.53h-1), 40g/L of glycerol was completely converted into 19.6g/L of PDO in merely 7h of batch fermentation, leaving only acetate and butyrate as the by-products. The accumulation of these volatile fatty acids was circumvented with the addition of calcium carbonate as the pH neutraliser before the fermentation was inoculated. An optimal amount of 15g/L of calcium carbonate was statistically determined from screening with various glycerol concentrations (20-120g/L). By substituting potassium hydroxide with calcium carbonate as the pH neutraliser for fermentation in a bioreactor, a similar yield (YPDO/glycerol=0.6mol/mol) with a constant pH was achieved at the end of the fermentation.


Assuntos
Clostridium butyricum , Fermentação , Carbonato de Cálcio , Glicerol , Concentração de Íons de Hidrogênio , Propilenoglicóis
7.
Environ Sci Process Impacts ; 17(10): 1806-15, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26343878

RESUMO

Iron-oxidizing bacterial consortia can be enriched in microbial fuel cells (MFCs) operated with ferrous iron as the sole electron donor. In this study, we investigated the possibility of using such lithotrophic iron-oxidizing MFC (LIO-MFC) systems as biosensors to monitor iron and manganese in water samples. When operated with anolytes containing only ferrous iron as the sole electron donor, the experimented LIO-MFCs generated electrical currents in response to the presence of Fe(2+) in the anolytes. For the concentrations of Fe(2+) in the range of 3-20 mM, a linear correlation between the current and the concentration of Fe(2+) could be achieved (r(2) = 0.98). The LIO-MFCs also responded to the presence of Mn(2+) in the anolytes but only when the Mn(2+) concentration was less than 3 mM. The presence of other metal ions such as Ni(2+) or Pb(2+) in the anolytes reduced the Fe(2+)-associated electricity generation of the LIO-MFCs at various levels. Organic compounds, when present at a non-excessive level together with Fe(2+) in the anolytes, did not affect the generation of electricity, although the compounds might serve as alternative electron donors for the anode bacteria. The performance of the LIO-MFCs was also affected to different degrees by operational parameters, including surrounding temperature, pH of the sample, buffer strength and external resistance. The results proved the potential of LIO-MFCs as biosensors sensing Fe(2+) in water samples with a significant specificity. However, the operation of the system should be in compliance with an optimal procedure to ensure reliable performance.


Assuntos
Monitoramento Ambiental/métodos , Ferro/análise , Manganês/análise , Poluentes Químicos da Água/análise , Fontes de Energia Bioelétrica , Técnicas Biossensoriais , Eletricidade , Ferro/metabolismo
8.
Bioresour Technol ; 195: 170-9, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26141668

RESUMO

Microbial electrochemical technologies (METs) are emerging green processes producing useful products from renewable sources without causing environmental pollution and treating wastes. The separator, an important part of METs that greatly affects the latter's performance, is commonly made of Nafion proton exchange membrane (PEM). However, many problems have been identified associated with the Nafion PEM such as high cost of membrane, significant oxygen and substrate crossovers, and transport of cations other than protons protons and biofouling. A variety of materials have been offered as alternative separators such as ion-exchange membranes, salt bridges, glass fibers, composite membranes and porous materials. It has been claimed that low cost porous materials perform better than PEM. These include J-cloth, nylon filter, glass fiber mat, non-woven cloth, earthen pot and ceramics that enable non-ion selective charge transfer. This paper provides an up-to-date review on porous separators and plots directions for future studies.


Assuntos
Fontes de Energia Bioelétrica/tendências , Eletroquímica/instrumentação , Eletroquímica/tendências , Membranas Artificiais , Porosidade
9.
Bioresour Technol ; 190: 395-401, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25976915

RESUMO

The cathode reaction is one of the most important limiting factors in bioelectrochemical systems even with precious metal catalysts. Since aerobic bacteria have a much higher affinity for oxygen than any known abiotic cathode catalysts, the performance of a microbial fuel cell can be improved through the use of electrochemically-active oxygen-reducing bacteria acting as the cathode catalyst. These consume electrons available from the electrode to reduce the electron acceptors present, probably conserving energy for growth. Anaerobic bacteria reduce protons to hydrogen in microbial electrolysis cells (MECs). These aerobic and anaerobic bacterial activities resemble those catalyzing microbially-influenced corrosion (MIC). Sulfate-reducing bacteria and homoacetogens have been identified in MEC biocathodes. For sustainable operation, microbes in a biocathode should conserve energy during such electron-consuming reactions probably by similar mechanisms as those occurring in MIC. A novel hypothesis is proposed here which explains how energy can be conserved by microbes in MEC biocathodes.


Assuntos
Fenômenos Fisiológicos Bacterianos , Fontes de Energia Bioelétrica/microbiologia , Eletroquímica/instrumentação , Eletrodos/microbiologia , Transferência de Energia/fisiologia , Modelos Biológicos , Corrosão , Desenho de Equipamento , Análise de Falha de Equipamento
10.
Bioresour Technol ; 190: 175-81, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25941759

RESUMO

The effect of two different anode-embedding orientations, lengthwise- and widthwise-embedded anodes was explored, on the performance of sediment microbial fuel cells (SMFCs) using a chessboard anode. The maximum current densities and power densities in SMFCs having lengthwise-embedded anodes (SLA1-SLA10) varied from 38.2mA/m(2) to 121mA/m(2) and from 5.5mW/m(2) to 20mW/m(2). In comparison, the maximum current densities and maximum power densities in SMFCs having anodes widthwise-embedded between 0cm to 8cm (SWA2-SWA5) increased from 82mA/m(2) to 140mA/m(2) and from 14.7mW/m(2) to 31.1mW/m(2) as the anode depth became deeper. Although there was a difference in the performance among SWA5-SWA10, it was considered negligible. Hence, it is concluded that it is important to embed anodes widthwise at the specific anode depths, in order to improve of SMFC performance. Chessboard anode used in this work could be a good option for the determination of optimal anode depths.


Assuntos
Fontes de Energia Bioelétrica/microbiologia , Eletrodos , Transferência de Energia , Sedimentos Geológicos/microbiologia , Microbiologia do Solo , Condutividade Elétrica , Desenho de Equipamento , Análise de Falha de Equipamento
11.
Microb Biotechnol ; 8(3): 579-89, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25712332

RESUMO

In this study, we attempted to enrich neutrophilic iron bacteria in a microbial fuel cell (MFC)-type reactor in order to develop a lithotrophic MFC system that can utilize ferrous iron as an inorganic electron donor and operate at neutral pHs. Electrical currents were steadily generated at an average level of 0.6 mA (or 0.024 mA cm(-2) of membrane area) in reactors initially inoculated with microbial sources and operated with 20 mM Fe(2+) as the sole electron donor and 10 ohm external resistance; whereas in an uninoculated reactor (the control), the average current level only reached 0.2 mA (or 0.008 mA cm(-2) of membrane area). In an inoculated MFC, the generation of electrical currents was correlated with increases in cell density of bacteria in the anode suspension and coupled with the oxidation of ferrous iron. Cultivation-based and denaturing gradient gel electrophoresis analyses both show the dominance of some Pseudomonas species in the anode communities of the MFCs. Fluorescent in-situ hybridization results revealed significant increases of neutrophilic iron-oxidizing bacteria in the anode community of an inoculated MFC. The results, altogether, prove the successful development of a lithotrophic MFC system with iron bacteria enriched at its anode and suggest a chemolithotrophic anode reaction involving some Pseudomonas species as key players in such a system. The system potentially offers unique applications, such as accelerated bioremediation or on-site biodetection of iron and/or manganese in water samples.


Assuntos
Processos Autotróficos , Fontes de Energia Bioelétrica , Eletricidade , Eletrodos/microbiologia , Compostos Ferrosos/metabolismo , Pseudomonadaceae/crescimento & desenvolvimento , Pseudomonadaceae/metabolismo , Oxirredução
12.
Bioresour Technol ; 177: 361-74, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25443672

RESUMO

Microbial conversion of syngas to energy-dense biofuels and valuable chemicals is a potential technology for the efficient utilization of fossils (e.g., coal) and renewable resources (e.g., lignocellulosic biomass) in an environmentally friendly manner. However, gas-liquid mass transfer and kinetic limitations are still major constraints that limit the widespread adoption and successful commercialization of the technology. This review paper provides rationales for syngas bioconversion and summarizes the reaction limited conditions along with the possible strategies to overcome these challenges. Mass transfer and economic performances of various reactor configurations are compared, and an ideal case for optimum bioreactor operation is presented. Overall, the challenges with the bioprocessing steps are highlighted, and potential solutions are suggested. Future research directions are provided and a conceptual design for a membrane-based syngas biorefinery is proposed.


Assuntos
Bactérias/metabolismo , Fenômenos Químicos , Gases/metabolismo , Biocombustíveis , Fermentação , Cinética
13.
Bioresour Technol ; 169: 265-270, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25062537

RESUMO

The effects of azide on electron transport of exoelectrogens were investigated using air-cathode MFCs. These MFCs enriched with azide at the concentration higher than 0.5mM generated lower current and coulomb efficiency (CE) than the control reactors, but at the concentration lower than 0.2mM MFCs generated higher current and CE. Power density curves showed overshoot at higher azide concentrations, with power and current density decreasing simultaneously. Electrochemical impedance spectroscopy (EIS) showed that azide at high concentration increased the charge transfer resistance. These analyses might reflect that a part of electrons were consumed by the anode microbial population rather than transferred to the anode. Bacterial population analyses showed azide-enriched anodes were dominated by Deltaproteobacteria compared with the controls. Based on these results it is hypothesized that azide can eliminate the growth of aerobic respiratory bacteria, and at the same time is used as an electron acceptor/sink.


Assuntos
Ar , Azidas/toxicidade , Fontes de Energia Bioelétrica , Elétrons , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Reatores Biológicos/microbiologia , Técnicas Eletroquímicas , Eletrodos , Transporte de Elétrons/efeitos dos fármacos , Oxigênio/análise , Fatores de Tempo
14.
J Microbiol Biotechnol ; 23(12): 1765-73, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24225369

RESUMO

The cathode reaction is one of the most seriously limiting factors in a microbial fuel cell (MFC). The critical dissolved oxygen (DO) concentration of a platinum-loaded graphite electrode was reported as 2.2 mg/l, about 10-fold higher than an aerobic bacterium. A series of MFCs were run with the cathode compartment inoculated with activated sludge (biotic) or not (abiotic) on platinum-loaded or bare graphite electrodes. At the beginning of the operation, the current values from MFCs with a biocathode and abiotic cathode were 2.3 ± 0.1 and 2.6 ± 0.2 mA, respectively, at the air-saturated water supply in the cathode. The current from MFCs with an abiotic cathode did not change, but that of MFCs with a biotic cathode increased to 3.0 mA after 8 weeks. The coulomb efficiency was 59.6% in the MFCs with a biotic cathode, much higher than the value of 15.6% of the abiotic cathode. When the DO supply was reduced, the current from MFCs with an abiotic cathode decreased more sharply than in those with a biotic cathode. When the respiratory inhibitor azide was added to the catholyte, the current decreased in MFCs with a biotic cathode but did not change in MFCs with an abiotic cathode. The power density was higher in MFCs with a biotic cathode (430 W/m(3) cathode compartment) than the abiotic cathode MFC (257 W/m(3) cathode compartment). Electron microscopic observation revealed nanowire structures in biofilms that developed on both the anode and on the biocathode. These results show that an electron consuming bacterial consortium can be used as a cathode catalyst to improve the cathode reaction.


Assuntos
Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Fenômenos Fisiológicos Bacterianos , Fontes de Energia Bioelétrica , Eletricidade , Eletrodos/microbiologia , Azidas/metabolismo , Bactérias/isolamento & purificação , Bactérias/ultraestrutura , Biodiversidade , Biofilmes/crescimento & desenvolvimento , Análise por Conglomerados , DNA Bacteriano/genética , Eletroforese em Gel de Gradiente Desnaturante , Grafite , Metagenoma , Microscopia Eletrônica , Oxigênio/metabolismo , Filogenia , Platina , Análise de Sequência de DNA
15.
ChemSusChem ; 5(6): 1086-91, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22570262

RESUMO

To scale-up microbial fuel cells (MFCs), installing multiple unit cells in a common reactor has been proposed; however, there has been a serious potential drop when connecting unit cells in series. To determine the source of the loss, a basic stack-MFC (BS-MFC) has been devised, and the results show that the phenomenon is due to ions on the anode electrode traveling through the electrolyte to be reduced at the cathode connected in series. As calculated by means of the percentage potential drop, the degree of potential drop decreased with an increase in the unit-cell distance. When the distance was increased from 1 to 8 cm, the percentage potential drop in BS-MFC1 decreased from 46.76 ± 0.90 to 45.08 ± 0.70 % and in BS-MFC2 from 46.41 ± 0.95 to 43.82 ± 2.23 %. As the p-value of the t-test was lower than 0.05, the difference was considered significant; however, if the unit cells are installed far enough from each other to avoid the potential drop phenomenon, the system will be less dense, consequently reducing the ratio of electrode area per volume of anode compartment and decreasing the power density of the system. Finally, this study suggests design criteria for scaling-up MFC systems: Multiple-electrode-installed MFCs are modularized, and the unit cells are connected in series across the module (connecting each unit cell does not share the anolyte).


Assuntos
Fontes de Energia Bioelétrica , Eletrodos , Desenho de Equipamento , Ferricianetos/química
16.
Biosens Bioelectron ; 35(1): 413-415, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22424752

RESUMO

Because of the advantages of low cost, good electrical conductivity and high oxidation resistance, nitrogen-doped carbon (NDC) materials have a potential to replace noble metals in microbial fuel cells (MFCs) for wastewater treatment. In spite of a large volume of studies on NDC materials as catalysts for oxygen reduction reaction, the influence of sulfide on NDC materials has not yet been explicitly reported so far. In this communication, nitrogen-doped carbon powders (NDCP) were prepared by treating carbon powders in nitric acid under reflux condition. Sodium sulfide (Na(2)S) was added to the cathodic electrolyte to compare its effects on platinum (Pt) and NDCP cathodes. Cell voltages, power density and cathodic potentials were monitored without and with Na(2)S and after Na(2)S was removed. The maximum cell voltage of the MFCs with Pt cathode decreased by 10% in the presence of Na(2)S that did not change the performance of the MFC with NDCP cathode, and the maximum power density of the MFC with NDCP cathode was even 11.3% higher than that with Pt cathode (222.5 ± 8 mW m(-2) vs. 199.7 ± 4 mW m(-2)).


Assuntos
Fontes de Energia Bioelétrica/microbiologia , Sulfetos/farmacologia , Carbono , Condutividade Elétrica , Eletrodos , Desenho de Equipamento , Concentração de Íons de Hidrogênio , Nitrogênio , Oxirredução , Platina
17.
Environ Sci Technol ; 45(23): 10186-93, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21985580

RESUMO

Nitrobenzene (NB) is a toxic compound that is often found as a pollutant in the environment. The present removal strategies suffer from high cost or slow conversion rate. Here, we investigated the conversion of NB to aniline (AN), a less toxic endproduct that can easily be mineralized, using a fed-batch bioelectrochemical system with microbially catalyzed cathode. When a voltage of 0.5 V was applied in the presence of glucose, 88.2 ± 0.60% of the supplied NB (0.5 mM) was transformed to AN within 24 h, which was 10.25 and 2.90 times higher than an abiotic cathode and open circuit controlled experiment, respectively. AN was the only product detected during bioelectrochemical reduction of NB (maximum efficiency 98.70 ± 0.87%), whereas in abiotic conditions nitrosobenzene was observed as intermediate of NB reduction to AN (decreased efficiency to 73.75 ± 3.2%). When glucose was replaced by NaHCO(3), the rate of NB degradation decreased about 10%, selective transformation of NB to AN was still achieved (98.93 ± 0.77%). Upon autoclaving the cathode electrode, nitrosobenzene was formed as an intermediate, leading to a decreased AN formation efficiency of 71.6%. Cyclic voltammetry highlighted higher peak currents as well as decreased overpotentials for NB reduction at the biocathode. 16S rRNA based analysis of the biofilm on the cathode indicated that the cathode was dominated by an Enterococcus species closely related to Enterococcus aquimarinus.


Assuntos
Compostos de Anilina/metabolismo , Eletrodos/microbiologia , Nitrobenzenos/metabolismo , Biodegradação Ambiental , Enterococcus/metabolismo , Estrutura Molecular , Oxirredução
18.
Appl Microbiol Biotechnol ; 89(2): 259-70, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20931187

RESUMO

As the microbial fuel cell (MFC) technology is getting nearer to practical applications such as wastewater treatment, it is crucial to consider the different aspects that will make this technology viable in the future. In this paper, we provide information about the specifications of an energy self-sufficient MFC system as a basis to extrapolate on the potential benefits and limits of a future MFC-based wastewater treatment plant. We particularly emphasize on the importance of two crucial parameters that characterize an MFC: its electromotive force (E (emf)) and its internal resistance (R (int)). A numerical projection using state-of-art values (E (emf) = 0.8 V and R (int) = 5 Ω) emphasized on the difficulty at this moment to reach self-sufficiency using a reasonable number of MFCs at the laboratory scale. We found that a realistic number of MFCs to provide enough voltage (=5 V) at a sufficient current (=0.8 A) to power a pump requiring 4 W would be of 13 MFCs in series and 10 stacks of MFCs in parallel, resulting in a total number of 130 MFCs. That would result in a treatment capacity of 144 L of domestic wastewater (0.5 g-COD L(-1)) per day. The total MFC system would be characterized by an internal resistance of 6.5 Ω.


Assuntos
Fontes de Energia Bioelétrica , Purificação da Água/métodos , Fontes de Energia Bioelétrica/microbiologia , Eletricidade , Esgotos/química , Esgotos/microbiologia
19.
Bioresour Technol ; 102(2): 742-7, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20863696

RESUMO

A microbial consortium with a high cellulolytic activity was enriched to degrade raw corn stover powder (RCSP). This consortium degraded more than 51% of non-sterilized RCSP or 81% of non-sterilized filter paper within 8 days at 40°C under facultative anoxic conditions. Cellulosome-like structures were observed in scanning electron micrographs (SEM) of RCSP degradation residue. The high cellulolytic activity was maintained during 40 subcultures in a medium containing cellulosic substrate. Small ribosomal gene sequence analyses showed the consortium contains uncultured and cultured bacteria with or without cellulolytic activities. Among these bacteria, some are anaerobic others aerobic. Analyses of the culture filtrate showed a typical anoxic polysaccharide fermentation during the culturing process. Reducing sugar concentration increased at early stage followed by various fermentation products that were consumed at the late stage.


Assuntos
Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Microbiologia do Solo , Zea mays/metabolismo , Biodegradação Ambiental , DNA Ribossômico/genética , Eletroforese em Gel de Gradiente Desnaturante , Filtração , Lignina/metabolismo , Pós , Análise de Sequência de DNA , Esterilização
20.
Biotechnol Lett ; 32(1): 79-85, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19731045

RESUMO

Propionate was used as fuel to enrich an electrochemically-active microbial consortium in a microbial fuel cell, and the bacterial consortium was analyzed by culture-independent methods including denaturing gradient gel electrophoresis (DGGE) of the 16S rDNA, and by fluorescent in situ hybridization (FISH). MFCs fed with propionate produced a current of 4.88 +/- 0.1 mA stably on 100 mg propionate/l as COD within 3 weeks of the enrichment. When the MFCs were fed with H2-saturated fuel containing propionate, the current dropped to 3.82 +/- 0.07 mA. The maximum current generated was up to 8.8 mA when MFCs were fed with 200 mg propionate/l as COD. The DGGE of 16S rDNA showed that propionate- enriched MFCs have a different bacterial population from that enriched with acetate and from the inoculum used for enrichment. The major member (42%) of the consortium was an unidentified bacterium followed by c, b, and d-proteobacteria.


Assuntos
Fontes de Energia Bioelétrica/microbiologia , Propionatos/metabolismo , Acetatos/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Betaproteobacteria/classificação , Betaproteobacteria/genética , Betaproteobacteria/metabolismo , DNA Ribossômico/genética , Deltaproteobacteria/classificação , Deltaproteobacteria/genética , Deltaproteobacteria/metabolismo , Eletroforese , Gammaproteobacteria/classificação , Gammaproteobacteria/genética , Gammaproteobacteria/metabolismo , Hidrogênio/metabolismo , Hibridização in Situ Fluorescente , Microscopia Confocal , Oxirredução , Reação em Cadeia da Polimerase , Eliminação de Resíduos Líquidos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...